Add like
Add dislike
Add to saved papers

Cardamonin inhibits osteogenic differentiation by downregulating Wnt/beta-catenin signaling and alleviates subchondral osteosclerosis in osteoarthritic mice.

Osteoarthritis (OA) is a common degenerative joint disease, and subchondral osteosclerosis is an important pathological change that occurs in its late stages. Cardamonin (CD) is a natural flavonoid isolated from Alpinia katsumadai that has anti-inflammatory activity. The objectives of this study were to investigate the therapeutic effects and potential mechanism of CD in regulating OA subchondral osteosclerosis at in vivo and in vitro settings. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sham operation, anterior cruciate ligament transection (ACLT)-induced OA model, low-dose and high-dose CD treated ACLT-OA model groups. Histological assessment and immunohistochemical examinations for chondrocyte metabolism-related markers metalloproteinase-13, ADAMTS-4, Col II, and Sox-9 were performed. Microcomputed tomography was used to assess the sclerosis indicators in subchondral bone. Further, MC3T3-E1 (a mouse calvarial preosteoblast cell line) cells were treated with various concentrations of CD to reveal the influence and potential molecular pathways of CD in osteogenic differentiations. Animal studies suggested that CD alleviated the pathological changes in OA mice such as maintaining integrity and increasing the thickness of hyaline cartilage, decreasing the thickness of calcified cartilage, decreasing the Osteoarthritis Research Society International score, regulating articular cartilage metabolism, and inhibiting subchondral osteosclerosis. In vitro investigation indicated that CD inhibited alkaline phosphatase expression and production of calcium nodules during osteogenic differentiation of MC3T3-E1 cells. In addition, CD inhibited the expression of osteogenic differentiation-related indicators and Wnt/β-catenin pathway-related proteins. In conclusion, CD inhibits osteogenic differentiation by downregulating Wnt/β-catenin signaling and alleviating subchondral osteosclerosis in a mouse model of OA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app