Add like
Add dislike
Add to saved papers

Constrained and Open Mesoporosity in Polypropylene Cracking: Insight From Spectroscopic Investigations of Acidity, Diffusion, and Activity.

The outcome of the demetalation process of zeolites depends on applied treatment conditions and can lead to the formation of either open or constrained mesopores. The quaternary ammonium cations as pore-directing agents during desilication are responsible for developing constrained mesoporosity with bottleneck entrances. However, higher mesopore surface area and higher accessibility of acid sites are often found for the hierarchical zeolites with constrained mesopores. This is followed by better catalytic activity in the cracking of vacuum gas oil and polymers. For desilication with pure NaOH, a realumination process is observed and an additional acid-wash step is required to reach their full catalytic potential. Thus, this study aims to analyze the acidic and catalytic properties of hierarchical ZSM-5 zeolites of different mesoporosity types employing in situ and operando FT-IR spectroscopic evaluation of polypropylene cracking. The suitability of constrained mesoporosity is studied by assessing the neopentane diffusion in kinetic adsorption, Monte Carlo calculations, and rapid scan FT-IR spectroscopic measurement analyzed by Crank solution for diffusion. The FT-IR spectroscopic results of in situ and operando studies are supported by two-dimensional correlation analysis, allowing to establish the direction of changes seen on spectra and their order.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app