Add like
Add dislike
Add to saved papers

High rates of nitrogen removal in aerated VFCWs treating sewage through C-N-S cycle.

The efficiency of deep aerated vertical flow constructed wetlands (DA-VFCWs) being operated in Hyderabad, India, was evaluated herein using physicochemical analysis and 16S rRNA amplicon sequencing. The results showed 2-4-fold higher removal rate coefficients for Biochemical oxygen demand (1.32---3.53 m/d) and nitrogen (0.88--1.36 m/d) in DA-VFCWs than those of passive VFCWs. Elevated sulfate concentration in the DA-VFCWs effluent (84-113 mg/L) indicated possibility of sulfur-driven autotrophic denitrification (SDAD) as a major pathway operating in these wetlands besides the classical nitrogen removal pathways. The presence of nitrifiers (3.09-10.02 %), heterotrophic and aerobic denitrifiers (0.79-0.83 %), anammox bacteria (1.31-2.22 %) and SDAD bacteria (0.08-0.73 %) in the biofilm samples collected from the DA-VFCWs exemplify an interplay of Carbon-Nitrogen-Sulfur cycles in these systems. If proven, the presence of an operational SDAD pathway in DA-VFCWs can help reduce surface area requirement in VFCWs substantially besides alleviating biological clogging of the wetland substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app