Add like
Add dislike
Add to saved papers

Determination of asbestos cement rooftop surface composition using regression analysis and hyper-spectral reflectance data in the visible and near-infrared ranges.

The effects of asbestos on human health have spurred numerous studies examining its risks in urban environments. Recent works have shifted towards less-invasive techniques for remote detection and classification of asbestos-cement. In this context, this study combines visible (VIS) and near-infrared (NIR) reflectance data collected in-situ with reference signals from the USGS spectral library, utilizing optimized regression analysis to determine the surface composition of corrugated asbestos-cement rooftops. An outlier filter was successfully implemented to enhance the accuracy of regression calculations, achieving a high level of agreement with actual field observations. The regression analysis revealed varying proportions of weathered cement, hazardous asbestos fibers (specifically chrysotile and cummingtonite), and biological growth (such as lichens and moss). These results are consistent with previous research on the composition of asbestos-cement rooftops, including a comparable field study and XRD analysis conducted in 2019. This underscores the importance of using regression analysis, preceded by an outlier filtering step, on VIS and NIR reflectance data to ascertain the surface composition of asbestos-cement rooftops. This methodology holds potential for application to larger hyperspectral datasets across more extensive sample surfaces and areas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app