Add like
Add dislike
Add to saved papers

Identification of metabolites produced by six gut commensal Bacteroidales strains using non-targeted LC-MS/MS metabolite profiling.

As the most abundant gram-negative bacterial order in the gastrointestinal tract, Bacteroidales bacteria have been extensively studied for their contribution to various aspects of gut health. These bacteria are renowned for their involvement in immunomodulation and their remarkable capacity to break down complex carbohydrates and fibers. However, the human gut microbiota is known to produce many metabolites that ultimately mediate important microbe-host and microbe-microbe interactions. To gain further insights into the metabolites produced by the gut commensal strains of this order, we examined the metabolite composition of their bacterial cell cultures in the stationary phase. Based on their abundance in the gastrointestinal tract and their relevance in health and disease, we selected a total of six bacterial strains from the relevant genera Bacteroides, Phocaeicola, Parabacteroides, and Segatella. We grew these strains in modified Gifu anaerobic medium (mGAM) supplemented with mucin, which resembles the gut microbiota's natural environment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolite profiling revealed 179 annotated metabolites that had significantly differential abundances between the studied bacterial strains and the control growth medium. Most of them belonged to classes such as amino acids and derivatives, organic acids, and nucleot(s)ides. Of particular interest, Segatella copri DSM 18205 (previously referred to as Prevotella copri) produced substantial quantities of the bioactive metabolites phenylethylamine, tyramine, tryptamine, and ornithine. Parabacteroides merdae CL03T12C32 stood out due to its ability to produce cadaverine, histamine, acetylputrescine, and deoxycarnitine. In addition, we found that strains of the genera Bacteroides, Phocaeicola, and Parabacteroides accumulated considerable amounts of proline-hydroxyproline, a collagen-derived bioactive dipeptide. Collectively, these findings offer a more detailed comprehension of the metabolic potential of these Bacteroidales strains, contributing to a better understanding of their role within the human gut microbiome in health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app