Add like
Add dislike
Add to saved papers

Curved-Crease Origami for Morphing Metamaterials.

We find a closed-form expression for the Poisson's coefficient of curved-crease variants of the "Miura ori" origami tessellation. This is done by explicitly constructing a continuous one-parameter family of isometric piecewise-smooth surfaces that describes the action of folding out of a reference state. The response of the tessellations in bending is investigated as well: using a numerical convergence scheme, the effective normal curvatures under infinitesimal bending are found to occur in a ratio equal and opposite to the Poisson's coefficient. These results are the first of their kind and, by their simplicity, should provide a fruitful benchmark for the design and modeling of curved-crease origami and compliant shell mechanisms. The developed methods are used to design a curved-crease 3D morphing solid with a tunable self-locked state.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app