Add like
Add dislike
Add to saved papers

Landau Singularities Revisited: Computational Algebraic Geometry for Feynman Integrals.

We reformulate the analysis of singularities of Feynman integrals in a way that can be practically applied to perturbative computations in the standard model in dimensional regularization. After highlighting issues in the textbook treatment of Landau singularities, we develop an algorithm for classifying and computing them using techniques from computational algebraic geometry. We introduce an algebraic variety called the principal Landau determinant, which captures the singularities even in the presence of massless particles or UV/IR divergences. We illustrate this for 114 example diagrams, including a cutting-edge 2-loop 5-point nonplanar QCD process with multiple mass scales.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app