Add like
Add dislike
Add to saved papers

Femtosecond Collisional Dissipation of Vibrating D_{2}^{+} in Helium Nanodroplets.

We explored the collision-induced vibrational decoherence of singly ionized D_{2} molecules inside a helium nanodroplet. By using the pump-probe reaction microscopy with few-cycle laser pulses, we captured in real time the collision-induced ultrafast dissipation of vibrational nuclear wave packet dynamics of D_{2}^{+} ion embedded in the droplet. Because of the strong coupling of excited molecular cations with the surrounding solvent, the vibrational coherence of D_{2}^{+} in the droplet interior only lasts for a few vibrational periods and completely collapses within 140 fs. The observed ultrafast coherence loss is distinct from that of isolated D_{2}^{+} in the gas phase, where the vibrational coherence persists for a long time with periodic quantum revivals. Our findings underscore the crucial role of ultrafast collisional dissipation in shaping the molecular decoherence and solvation dynamics during solution chemical reactions, particularly when the solute molecules are predominantly in ionic states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app