Add like
Add dislike
Add to saved papers

All-in-one treatment: Capture and immobilization of 137 Cs by ultra-stable inorganic solid acid materials HMMoO 6 ·nH 2 O (M = Ta, Nb).

Water Research 2024 March 13
Capture and immobilization of 137 Cs is urgent for radioactive contamination remediation and spent fuel treatment. Herein, an effective all-in-one treatment method to simultaneously adsorb and immobilize Cs+ without high-temperature treatment is proposed. According to the strategy of incorporating high-valency metal ions into molybdates to increase the material stability and affinity towards radionuclides, layered HMMoO6 ·nH2 O (M = Ta (1), Nb (2)) are prepared. Both materials exhibit excellent acid resistance (even 15 mol/L HNO3 ). They maintain remarkable adsorption capacity for Cs+ in 1 mol/L HNO3 solutions and can selectively capture Cs+ under excessive competitive ions. Furthermore, they show successful cleanup for actual 137 Cs-liquid-wastes generated during industrial production. In particular, adsorbed Cs+ can be firmly immobilized in interlayer spaces of materials due to the highly stable anionic framework. The removal mechanism is attributed to ion exchange between Cs+ and interlayer H+ by multiple characterizations. Study of the structure-function relationship shows that the occurrence of Cs+ ion exchange is closely related to plate-like layered structure. This work develops an efficient all-in-one treatment method for capturing and immobilizing radiocesium by ultra-stable inorganic solid acid materials with low energy consumption and high safety for radionuclide remediation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app