Add like
Add dislike
Add to saved papers

Targeting osteopontin alleviates endometriosis and inflammation by inhibiting the RhoA/ROS axis and achieves non-invasive in vitro detection via menstrual blood.

Human Reproduction 2024 March 21
STUDY QUESTION: How does osteopontin (OPN) in endometriosis ectopic stromal cells (EESCs) participate in the pathogenesis of endometriosis and achieve non-invasive detection in vitro?

SUMMARY ANSWER: Targeted OPN regulates endometriosis's necroptosis and inflammatory state by inhibiting the RhoA/reactive oxygen species (ROS) axis, thereby alleviating endometriosis and enabling non-invasive detection of menstrual blood in vitro.

WHAT IS KNOWN ALREADY: Endometriosis is a chronic inflammatory disease. Recent studies have shown that OPN plays an important role in disease progression by regulating cell death and inflammation.

STUDY DESIGN, SIZE, DURATION: The study included 20 patients diagnosed with endometriosis (confirmed by laparoscopy and histology) and 10 controls without endometriosis. Endometriotic stromal cells were isolated from endometrial samples, while menstrual blood endometrial cells (MESCs) were isolated from menstrual blood. These cells were then cultured in vitro and utilized in subsequent experiments.

PARTICIPANTS/MATERIALS, SETTING, METHODS: OPN expression in EESCs was assessed using inflammatory factor sequencing, immunohistochemical staining (IHC), quantitative real-time PCR (qRT-PCR) analysis, and Western blotting (WB). The biological behavior of OPN and its effects on inflammatory factors were examined using EdU, wound-healing, Transwell, and ELISA assays. Necroptosis in EESCs and its impact on inflammatory factors were detected through qRT-PCR, WB, and Calcein-AM/PI fluorescence assays. The examination of mitochondrial stress in EESCs involved the use of the Mitochondrial Membrane Potential (ΔΨm) Assay, ROS detection, and Calcein-AM Loading/cobalt chloride Quenching. qRT-PCR, WB, and other experiments were conducted to verify the regulation of necroptosis and inflammatory factor levels in EESCs by OPN through the RhoA/ROS axis. Knockdown of OPN and its inhibitory effect on endometriosis lesion size were confirmed using AAV9 virus, IHC, qRT-PCR, WB, and other experiments. Additionally, OPN expression in MESCs was detected using transcriptome sequencing, RT-PCR, WB, and other experiments.

MAIN RESULTS AND THE ROLE OF CHANCE: In vitro assays demonstrated a significant upregulation of OPN in EESCs, and the knockdown of OPN effectively inhibited necroptosis and the release of inflammatory factors. OPN inhibited necroptosis and inflammatory factor release by mediating RhoA-dependent ROS production and blocking mixed lineage kinase domain-like protein phosphorylation at the cell membrane. In vivo, targeting of OPN can inhibit the growth of endometriosis lesions. Clinically, OPN was also significantly upregulated in the menstrual blood of patients with endometriosis.

LARGE SCALE DATA: N/A.

LIMITATIONS, REASONS FOR CAUTION: Due to limitations in obtaining surgical specimens, our study primarily involved collecting endometriosis tissues from women during the proliferative and secretory phases of the menstrual cycle. We observed a significant overexpression of OPN in the samples used for our investigation. However, the expression of OPN in endometriosis tissues during the intermenstrual phase remains unknown.

WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the pivotal role of the OPN/RhoA/ROS axis in the regulation of necroptosis and the release of inflammatory factors. OPN knockdown exerts a therapeutic effect in vivo, and the high expression detection of OPN in menstrual blood in vitro. In summary, targeting OPN provides possibilities for the treatment and detection of endometriosis.

STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (82071626), the Zhejiang Province Public Welfare Technology Application Research Project (LGF21H040010), and the Clinical Research project of the Second Affiliated Hospital of Wenzhou Medical University (1010293). The authors have no conflicts of interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app