Add like
Add dislike
Add to saved papers

Predicting disease recurrence in limited disease small cell lung cancer using cell-free DNA-based mutation and fragmentome analyses.

BACKGROUND: Limited disease (LD) small cell lung cancer (SCLC) treated with definitive concurrent chemoradiotherapy (CCRT) potentially experience disease recurrence. We investigated the feasibility of circulating-tumor DNA (ctDNA)-based genomic and fragmentome analyses to assess the risk of recurrence.

METHODS: Targeted sequencing was conducted using pre-treatment and on-treatment blood samples from definitive CCRT-treated patients with LD-SCLC (n=50). Based on 12-month recurrence-free survival (RFS), patients were categorized into persistent-response (PeR, n=29) and non-PeR (n=21) groups. Fragmentome analysis was conducted using ctDNA fragments of different lengths: P1 (100-155 bp) and P2 (160-180 bp).

RESULTS: Patients with TP53 (n=15) and RB1 (n=11) mutation in on-treatment samples demonstrated significantly shorter RFS than patients with wild-type (WT) (P=0.05, P=0.0014, respectively). Fragmentome analysis of all available on-treatment samples (n=26) revealed that the non-PeR group (n=10) had a significantly higher P1 range (P=0.003) and lower P2 range (P=0.002). The areas under the curves for P1, P2, and the fragmentation ratio (P1/P2) in distinguishing the PeR and non-PeR were 0.850, 0.725, and 0.900, respectively. Using optimal cut-off, longer RFSs were found with the low-fragmentation-ratio group than with the high-fragmentation-ratio group (not reached vs. 7.6 months, P=0.002). Patients with both WT RB1 and a low-fragmentation-ratio (n=10) showed better outcomes than patients with both mutated RB1 and a high-fragmentation-ratio (n=10; hazard ratio, 7.55; 95% confidence interval: 2.14-26.6; P=0.002).

CONCLUSIONS: RB1 mutations and high fragmentation ratios correlated with early disease recurrence. Analyzing ctDNA could help in predicting early treatment failure and making clinical decisions for high-risk patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app