Add like
Add dislike
Add to saved papers

Newborn screening for G6PD deficiency in HeFei, FuYang and AnQing, China: Prevalence, cut-off value, variant spectrum.

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive Mendelian genetic disorder characterized by neonatal jaundice and hemolytic anemia, affecting more than 400 million people worldwide. The purpose of this research was to investigate prevalence rates of G6PD deficiency and to evaluate and establish specific cut-off values in early prediction of G6PD deficiency by regions (HeFei, FuYang, AnQing) on different seasons, as well as to investigate the frequencies of G6PD gene mutations among three regions mentioned above.

METHODS: A total of 31,482 neonates (21,402, 7680, and 2340 for HeFei, FuYang, and AnQing cities, respectively) were recruited. Positive subjects were recalled to attend genetic tests for diagnosis. G6PD activity on the Genetic screening processor (GSP analyzer, 2021-0010) was measured following the manufactureržs protocol. The cut-off value was first set to 35 U/dL. The receiver operating characteristics (ROC) curve was employed to assess and compare the efficiency in predicting G6PD deficiency among HeFei, FuYang, and AnQing cities in different seasons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app