Add like
Add dislike
Add to saved papers

Lipoarabinomannan-based tuberculosis diagnosis using a fiber cavity ring down biosensor.

Despite existing for millennia, tuberculosis (TB) remains a persistent global health challenge. A significant obstacle in controlling TB spread is the need for a rapid, portable, sensitive, and accurate diagnostic test. Currently, sputum culture stands as a benchmark test for TB diagnosis. Although highly reliable, it necessitates advanced laboratory facilities and involves considerable testing time. In this context, we present a rapid, portable, and cost-effective optical fiber sensor designed to measure lipoarabinomannan (LAM), a TB biomarker found in patients' urine samples. Our sensing approach is based on the applications of phase shift-cavity ringdown spectroscopy (PS-CRDS) to an optical fiber cavity created by two fiber Bragg gratings. A tapered fiber is spliced inside the optical cavity to serve as the sensing head. We functionalize the tapered fiber surface with anti-LAM antigen CS-35 through a unique chemistry, creating a strong affinity for LAM molecules. We measure the phase difference between the cavity transmission and the reference modulating signal at the cavity output. The measured phase is directly proportional to the injected LAM concentrations in aqueous solutions over the sensing head. Our demonstrated sensor provides a detection limit of 10 pg/mL and a sensitivity of 0.026°/pg/mL. This sensor holds promise for numerous applications in the healthcare sector, particularly in low-resource settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app