Add like
Add dislike
Add to saved papers

Antibacterial adhesive based on oxidized tannic acid-chitosan for rapid hemostasis.

Currently, bacterial infections and bleeding interfere with wound healing, and multifunctional hydrogels with appropriate blood homeostasis, skin adhesion, and antibacterial activity are desirable. In this study, chitosan-based hydrogels were synthesized using oxidized tannic acid (OTA) and Fe3+ as cross-linkers (CS-OTA-Fe) by forming covalent, non-covalent, and metal coordination bonds between Fe3+ and OTA. Our results demonstrated that CS-OTA-Fe hydrogels showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus)and Gram-negative bacteria (Escherichia coli), low hemolysis rate (< 2 %), rapid blood clotting ability, in vitro (< 2 min), and in vivo (90 s) in mouse liver bleeding. Additionally, increasing the chitosan concentration from 3 wt% to 4.5 wt% enhanced cross-linking in the network, leading to a significant improvement in the strength (from 106 ± 8 kPa to 168 ± 12 kPa) and compressive modulus (from 50 ± 9 kPa to 102 ± 14 kPa) of hydrogels. Moreover, CS-OTA-Fe hydrogels revealed significant adhesive strength (87 ± 8 kPa) to the cow's skin tissue and cytocompatibility against L929 fibroblasts. Overall, multifunctional CS-OTA-Fe hydrogels with tunable mechanical properties, excellent tissue adhesive, self-healing ability, good cytocompatibility, and fast hemostasis and antibacterial properties could be promising candidates for biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app