Add like
Add dislike
Add to saved papers

Utilizing Siamese 4D-AlzNet and Transfer Learning to Identify Stages of Alzheimer's Disease.

Neuroscience 2024 March 15
Alzheimer's disease (AD) is the general form of dementia, leading to a progressive neurological disorder characterized by memory loss due to brain cell damage. Artificial Intelligence (AI) assists in the early identification and prediction of AD patients, determining future risks and benefits for radiologists and doctors to save time and cost. Since deep learning (DL) approaches work well with massive datasets and have recently become helpful for AD detection, there remains an area for improvement in automating detection performance. Present approaches somehow addressed the challenges of limited annotated data samples for binary classification. This contrasts with prior state-of-the-art techniques, which were constrained by their incapacity to capture abstract-level information. In this paper, we proposed a Siamese 4D-AlzNet model comprised of four parallel CNN streams (Five CNN layer blocks) and customized transfer learning models (Frozen VGG-19, Frozen VGG-16, and customized AlexNet). Siamese 4D-AlzNet was vertically and horizontally stored, and the spatial features were passed to the final layer for classification. For experiments, T1-weighted MRI images comprised of four distinct subject classes, normal control (NC), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI), and AD, have been employed. Our proposed models achieved outstanding accuracy, with a remarkable 95.05% accuracy distinguishing between normal and AD subjects. The performance across remaining binary class pairs consistently exceeded 90%. We thoroughly compared our model with the latest methods using the same dataset as our reference. Our proposed model improved NC-AD and MCI-AD classification accuracy by 2% to 7%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app