Journal Article
Review
Add like
Add dislike
Add to saved papers

Targeting Inflammatory Signaling Pathways with SGLT2 Inhibitors: Insights into Cardiovascular Health and Cardiac Cell Improvement.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted significant attention for their broader therapeutic impact beyond simply controlling blood sugar levels, particularly in their ability to influence inflammatory pathways. This review delves into the anti-inflammatory properties of SGLT2 inhibitors, with a specific focus on canagliflozin, empagliflozin, and dapagliflozin. One of the key mechanisms through which SGLT2 inhibitors exert their anti-inflammatory effects is by activating AMP-activated protein kinase (AMPK), a crucial regulator of both cellular energy balance and inflammation. Activation of AMPK by these inhibitors leads to the suppression of pro-inflammatory pathways and a decrease in inflammatory mediators. Notably, SGLT2 inhibitors have demonstrated the ability to inhibit the release of cytokines in an AMPK-dependent manner, underscoring their direct influence on inflammatory signaling. Beyond AMPK activation, SGLT2 inhibitors also modulate several other inflammatory pathways, including the NLRP3 inflammasome, expression of Toll-like receptor 4 (TLR-4), and activation of NF-κB (Nuclear factor kappa B). This multifaceted approach contributes to their efficacy in reducing inflammation and managing associated complications in conditions such as diabetes and cardiovascular disorders. Several human and animal studies provide support for the anti-inflammatory effects of SGLT2 inhibitors, demonstrating protective effects on various cardiac cells. Additionally, these inhibitors exhibit direct anti-inflammatory effects by modulating immune cells. Overall, SGLT2 inhibitors emerge as promising therapeutic agents for targeting inflammation in a range of pathological conditions. Further research, particularly focusing on the molecular-level pathways of inflammation, is necessary to fully understand their mechanisms of action and optimize their therapeutic potential in inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app