Add like
Add dislike
Add to saved papers

Identification and biochemical characterization of a carboxylesterase gene associated with β-cypermethrin resistance in Dermanyssus gallinae.

Poultry Science 2024 March 6
Dermanyssus gallinae is a major hematophagous ectoparasite in layer hens. Although the acaricide β-cypermethrin has been used to control mites worldwide, D. gallinae has developed resistance to this compound. Carboxylesterases (CarEs) are important detoxification enzymes that confer resistance to β-cypermethrin in arthropods. However, CarEs associated with β-cypermethrin resistance in D. gallinae have not yet been functionally characterized. Here, we isolated a CarE gene (Deg-CarE) from D. gallinae and assayed its activity. The results revealed significantly higher expression of Deg-CarE in the β-cypermethrin-resistant strain (RS) than in the susceptible strain (SS) toward α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA). These findings suggest that enhanced esterase activities might have contributed to β-cypermethrin resistance in D. gallinae. Quantitative real-time PCR analysis revealed that Deg-CarE expression levels were significantly higher in adults than in other life stages. Although Deg-CarE was upregulated in the RS, significant differences in gene copy numbers were not observed. Additionally, Deg-CarE expression was significantly induced by β-cypermethrin in both the SS and RS. Moreover, silencing Deg-CarE via RNA interference decreased the enzyme activity and increased the susceptibility of the RS to β-cypermethrin, confirming that Deg-CarE is crucial for β-cypermethrin detoxification. Finally, recombinant Deg-CarE (rDeg-CarE) expressed in Escherichia coli displayed high enzymatic activity toward α/β-NA. However, metabolic analysis indicated that rDeg-CarE did not directly metabolize β-cypermethrin. The collective findings indicate that D. gallinae resistance to β-cypermethrin is associated with elevated CarEs protein activity and increased Deg-CarE expression levels. These findings provide insights into the metabolic resistance of D. gallinae and offer scientific guidance for the management and control of D. gallinae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app