Add like
Add dislike
Add to saved papers

Machine learning based endothelial cell image analysis of patients undergoing descemet membrane endothelial keratoplasty surgery.

OBJECTIVES: In this study, we developed a machine learning approach for postoperative corneal endothelial cell images of patients who underwent Descemet's membrane keratoplasty (DMEK).

METHODS: An AlexNet model is proposed and validated throughout the study for endothelial cell segmentation and cell location determination. The 506 images of postoperative corneal endothelial cells were analyzed. Endothelial cell detection, segmentation, and determining of its polygonal structure were identified. The proposed model is based on the training of an R-CNN to locate endothelial cells. Next, by determining the ridges separating adjacent cells, the density and hexagonality rates of DMEK patients are calculated.

RESULTS: The proposed method reached accuracy and F1 score rates of 86.15 % and 0.857, respectively, which indicates that it can reliably replace the manual detection of cells in vivo confocal microscopy (IVCM). The AUC score of 0.764 from the proposed segmentation method suggests a satisfactory outcome.

CONCLUSIONS: A model focused on segmenting endothelial cells can be employed to assess the health of the endothelium in DMEK patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app