Add like
Add dislike
Add to saved papers

Dynamic stabilization of ablative Rayleigh-Taylor instability in the presence of a temporally modulated laser pulse.

Physical Review. E 2024 Februrary
This paper presents a numeric study of the dynamic stabilization of the ablative Rayleigh-Taylor instability (ARTI) in the presence of a temporally modulated laser pulse. The results show that the specially modulated laser produces a dynamically stabilized configuration near the ablation front. The physical features of the relevant laser-driven parameters in the unperturbed ablative flows have been analyzed to reveal the inherent stability mechanism underlying the dynamically stabilized configuration. A single-mode ARTI for the modulated laser pulse is first compared with that of the unmodulated laser pulse. The results show that the modulated laser stabilizes the surface perturbations and reduces the linear growth rate and enhancement of the cutoff wavelength. For multimode perturbations, the dynamic stabilization effect of the modulated laser pulse contributes to suppress the small-scale structure and reduce the width of the mixing layer. Moreover, the results show that the stabilization effect of the modulated laser pulse decreases as the maximum wavelength increases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app