Add like
Add dislike
Add to saved papers

Individual-finger motor imagery classification: a data-driven approach with Shapley-informed augmentation.

OBJECTIVE: Classifying motor imagery (MI) tasks that involve fine motor control of the individual five fingers presents unique challenges when utilizing electroencephalography (EEG) data. In this paper, we systematically assess the classification of MI functions for the individual five fingers using single-trial time-domain EEG signals. This assessment encompasses both within-subject and cross-subject scenarios, supported by data-driven analysis that provides statistical validation of the neural correlate that could potentially discriminate between the five fingers.

APPROACH: We present Shapley-informed augmentation, an informed approach to enhance within-subject classification accuracy. This method is rooted in insights gained from our data-driven analysis, which revealed inconsistent temporal features encoding the five fingers MI across sessions of the same subject. To evaluate its impact, we compare within-subject classification performance both before and after implementing this augmentation technique.

MAIN RESULTS: Both the data-driven approach and the model explainability analysis revealed that the parietal cortex contains neural information that helps discriminate the individual five fingers' MI apart. Shapley-informed augmentation successfully improved classification accuracy in sessions severely affected by inconsistent temporal features. The accuracy for sessions impacted by inconsistency in their temporal features increased by an average of 26.3% ± 6.70, thereby enabling a broader range of subjects to benefit from brain-computer interaction (BCI) applications involving five-fingers MI classification. Conversely, non-impacted sessions experienced only a negligible average accuracy decrease of 2.01 ± 5.44%. The average classification accuracy achieved is around 60.0% (within-session), 50.0% (within-subject) and 40.0% (leave-one-subject-out).

SIGNIFICANCE: This research offers data-driven evidence of neural correlates that could discriminate between the individual five fingers MI and introduces a novel Shapley-informed augmentation method to address temporal variability of features, ultimately contributing to the development of personalized systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app