Add like
Add dislike
Add to saved papers

Venom trade-off shapes interspecific interactions, physiology, and reproduction.

Science Advances 2024 March 16
The ability of an animal to effectively capture prey and defend against predators is pivotal for survival. Venom is often a mixture of many components including toxin proteins that shape predator-prey interactions. Here, we used the sea anemone Nematostella vectensis to test the impact of toxin genotypes on predator-prey interactions. We developed a genetic manipulation technique to demonstrate that both transgenically deficient and a native Nematostella strain lacking a major neurotoxin (Nv1) have a reduced ability to defend themselves against grass shrimp, a native predator. In addition, secreted Nv1 can act indirectly in defense by attracting mummichog fish, which prey on grass shrimp. Here, we provide evidence at the molecular level of an animal-specific tritrophic interaction between a prey, its antagonist, and a predator. Last, this study reveals an evolutionary trade-off, as the reduction of Nv1 levels allows for faster growth and increased reproductive rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app