Journal Article
Review
Add like
Add dislike
Add to saved papers

The Interplay of Mitochondrial Bioenergetics and Dopamine Agonists as an Effective Disease-Modifying Therapy for Parkinson's Disease.

Parkinson's disease (PD) is a progressive neurological ailment with a slower rate of advancement that is more common in older adults. The biggest risk factor for PD is getting older, and those over 60 have an exponentially higher incidence of this condition. The failure of the mitochondrial electron chain, changes in the dynamics of the mitochondria, and abnormalities in calcium and ion homeostasis are all symptoms of Parkinson's disease (PD). Increased mitochondrial reactive oxygen species (mROS) and an energy deficit are linked to these alterations. Levodopa (L-DOPA) is a medication that is typically used to treat most PD patients, but because of its negative effects, additional medications have been created utilizing L-DOPA as the parent molecule. Ergot and non-ergot derivatives make up most PD medications. PD is successfully managed with the use of dopamine agonists (DA). To get around the motor issues produced by L-DOPA, these dopamine derivatives can directly excite DA receptors in the postsynaptic membrane. In the past 10 years, two non-ergoline DA with strong binding properties for the dopamine D2 receptor (D2R) and a preference for the dopamine D3 receptor (D3R) subtype, ropinirole, and pramipexole (PPx) have been developed for the treatment of PD. This review covers the most recent research on the efficacy and safety of non-ergot drugs like ropinirole and PPx as supplementary therapy to DOPA for the treatment of PD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app