Add like
Add dislike
Add to saved papers

Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer.

ACS Nano 2024 March 12
The majority of triple negative breast cancers (TNBCs) are basal-like breast cancers (BLBCs), which tend to be more aggressive, proliferate rapidly, and have poor clinical outcomes. A key prognostic biomarker and regulator of BLBC is the Forkhead box C1 (FOXC1) transcription factor. However, because of its functional placement inside the cell nucleus and its structural similarity with other related proteins, targeting FOXC1 for therapeutic benefit, particularly for BLBC, continues to be difficult. We envision targeted nonviral delivery of CRISPR/Cas9 plasmid toward the efficacious knockdown of FOXC1. Keeping in mind the challenges associated with the use of CRISPR/Cas9 in vivo, including off-targeting modifications, and effective release of the cargo, a nanoparticle with context responsive properties can be designed for efficient targeted delivery of CRISPR/Cas9 plasmid. Consequently, we have designed, synthesized, and characterized a zwitterionic amino phospholipid-derived transfecting nanoparticle for delivery of CRISPR/Cas9. The construct becomes positively charged only at low pH, which encourages membrane instability and makes it easier for nanoparticles to exit endosomes. This has enabled effective in vitro and in vivo downregulation of protein expression and genome editing. Following this, we have used EpCAM aptamer to make the system targeted toward BLBC cell lines and to reduce its off-target toxicity. The in vivo efficacy, biodistribution, preliminary pharmacokinetics, and biosafety of the optimized targeted CRISPR nanoplatform is then validated in a rodent xenograft model. Overall, we have attempted to knockout the proto-oncogenic FOXC1 expression in BLBC cases by efficient delivery of CRISPR effectors via a context-responsive nanoparticle delivery system derived from a designer lipid derivative. We believe that the nonviral approach for in vitro and in vivo delivery of CRISPR/Cas9 targeted toward FOXC1, studied herein, will greatly emphasize the therapeutic regimen for BLBC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app