Add like
Add dislike
Add to saved papers

Magnetic Fe 3 O 4 /Al 2 O 3 /MnO 2 ternary nanocomposite: Synthesis and characterization for phosphorus desorption from acidic soils using dialysis membrane tube.

Heliyon 2024 March 16
Monitoring phosphorus fertilization is crucial for controlling the concentration of biologically available soil P. Over the years, several methodologies have been used, including successive cropping in a greenhouse or field, as well as extractions employing P sink procedures. The latter procedures are ideal laboratory experiments to show the soil's ability to supply P and to explore the P-residual release kinetics. Following these methodologies, long-term P desorption studies have been developed using dialysis membrane tubes filled with nanomaterial solutions. In this study, a magnetic nanocomposite (Fe3 O4 /Al2 O3 /MnO2 ) was synthesized and characterized utilizing cutting-edge instruments such as XRD, FTIR, FAAS, BET, SEM, and EDX. The resulting material had a crystalline size and surface area of 22.75 nm and 203.69 m2 /g, respectively, and was employed for long-term P-desorption and kinetics experiments while filled in dialysis membrane tubes. The P-desorption experiment was conducted on four separate acidic soil samples that were cultured for 122 days with four different P concentrations. The findings demonstrated a direct relationship between P-desorbed and P-treatment, as well as with desorption time. The minimum desorption was obtained from the control of Boji Dirmaji soil P0 (1.16-9.36) and the highest desorption from Nedjo soil with P3 (5.23-30.35 mg/kg) treatment over 1-28 days. The rate of P release from soil to solution or diffusion through the membrane was determined by pseudo-first-order kinetics with a rate constant (0.021-0.028 hr-1 ). This method has the potential to measure fixed-P availability by mimicking it as a plant would, with high P-desorption efficiency and quick P-release capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app