Add like
Add dislike
Add to saved papers

Matairesinoside, a novel inhibitor of TMEM16A ion channel, loaded with functional hydrogel for lung cancer treatment.

The incidence and mortality rates of lung cancer have remained high for several decades, necessitating the discovery of new drugs and the development of effective treatment strategies. This study identified matairesinoside (MTS) as a potent inhibitor of TMEM16A, a novel drug target for lung cancer. Molecular simulation combined with site-directed mutagenesis experiments confirmed the key binding sites of MTS and TMEM16A. Cell experiments demonstrated that MTS significantly inhibited the growth, migration, and invasion of lung cancer cells, while inducing apoptosis. Gene knockdown and overexpression studies further revealed that TMEM16A is the target for MTS in regulating lung cancer cell growth. Western blot analysis elucidated the signaling transduction network involved in MTS-mediated regulation of lung cancer. Building upon these findings, a biodegradable self-healing functional hydrogel was developed to load MTS, aiming to enhance therapeutic efficacy and minimize side effects in vivo. Animal experiments demonstrated that the hydrogel/MTS formulation exhibited satisfactory inhibitory effects on lung cancer and mitigated the side effects associated with direct MTS injection. This study identified MTS as a potential candidate for anti-lung cancer therapy with well-defined pharmacological mechanisms. Moreover, the targeted drug delivery system utilizing the hydrogel/MTS platform offers a promising approach for lung cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app