Add like
Add dislike
Add to saved papers

Effects of primary leachates of conventional and alternative plastics in Cyprinodon variegatus fish larvae: Endocrine disruption and toxicological responses.

The inclusion of hazardous substances in the formulation of plastics raises significant concerns, particularly, if those substances are released as primary leachates during plastic degradation and/or fragmentation. In this sense, the production of degradable plastics holding deleterious additives can increase the release of harmful substances into the environment. Additionally, the effects of primary leachates of "eco-friendly" materials remain unexplored. To address this, we performed exposures to primary leachates of alternative polymers, and commercial bags to verify possible responses associated with endocrine disruption and/or activation of the detoxification pathway in larvae of the marine fish model Cyprinodon variegatus. The chemical characterization evidenced a great number of additives in the formulation of the materials analyzed in this study. Those include, except for the PLA sample, relevant levels of the hazardous phthalates DEHP and DiBP. Regarding the effects on marine fish larvae, exposure to leachates from alternative polymers (10 g/L) PHB and PHBV produced remarkable mortality (100%). While the exposure to bag leachates of all tested materials (1 and 10 g/L) produced alterations in biomarkers for steroidogenic and detoxification pathways. To a lesser extent (10 g/L), three materials produced significant alterations in estrogenic biomarkers (Home-compostable bag 1, LDPE and Recycled PE bags. Although the alterations in gene expression were not directly correlated to the amount of DEHP or DiBP, we can conclude that primary leachates of "eco-friendly" bags are harmful to marine vertebrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app