Add like
Add dislike
Add to saved papers

Pitavastatin induces autophagy-dependent ferroptosis in MDA-MB-231 cells via the mevalonate pathway.

Heliyon 2024 March 16
Triple-negative breast cancer (TNBC) is more prone to recurrence and metastasis relative to other subtypes of breast cancer, leading to an extremely poor prognosis. The increasing potential chemoresistance of TNBC patients is mainly due to that tumor cells escape from apoptosis. In recent years, statins have demonstrated extensive anti-tumor effects. It is worth noting that statins have more effective anti-tumor effects on TNBC cells and drug-resistant breast cancer cells. Therefore, this study examines the superior cytotoxic effects of statins on TNBC cell lines and further explores their potential therapeutic mechanisms. We detected different cell phenotypes and found that statins significantly reduced the cell viability of TNBC cells. Specifically, pitavastatin showed an obvious induction in cell death, cell cycle arrest and oxidative stress in TNBC MDA-MB-231 cells. The reversal effect of iron chelator desferrioxamine (DFO) on the morphological and molecular biological changes induced by pitavastatin has revealed a new mode of cell death induced by pitavastatin: ferroptosis. This ferroptotic effect was strengthened by the decreased expression of glutathione peroxidase 4 (GPx4) as well as newly discovered ferroptosis suppressor protein 1 (FSP1). The data showed that ferroptotic death of MDA-MB-231 cells is autophagy-dependent and mediated by the mevalonate pathway. Finally, we found that therapeutic oral doses of statins can inhibit the growth of transplanted tumors, which establishes statins as a potential treatment for TNBC patients. In conclusion, we found pitavastatin could induce autophagy-dependent ferroptosis in TNBC cells via the mevalonate pathway which may become a potential adjuvant treatment option for TNBC patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app