Add like
Add dislike
Add to saved papers

Human leucocytes processed by fast-rate inertial microfluidics retain conventional functional characteristics.

The manufacturing of clinical cellular therapies is a complex process frequently requiring manipulation of cells, exchange of buffers and volume reduction. Current manufacturing processes rely on either low throughput open centrifugation-based devices, or expensive closed-process alternatives. Inertial focusing (IF) microfluidic devices offer the potential for high-throughput, inexpensive equipment which can be integrated into a closed system, but to date no IF devices have been approved for use in cell therapy manufacturing, and there is limited evidence for the effects that IF processing has on human cells. The IF device described in this study was designed to simultaneously separate leucocytes, perform buffer exchange and provide a volume reduction to the cell suspension, using high flow rates with high Reynolds numbers. The performance and effects of the IF device were characterized using peripheral blood mononuclear cells and isolated monocytes. Post-processing cell effects were investigated using multi-parameter flow cytometry to track cell viability, functional changes and fate. The IF device was highly efficient at separating CD14+ monocytes (approx. 97% to one outlet, approx. 60% buffer exchange, 15 ml min-1 ) and leucocyte processing was well tolerated with no significant differences in downstream viability, immunophenotype or metabolic activity when compared with leucocytes processed with conventional processing techniques. This detailed approach provides robust evidence that IF devices could offer significant benefits to clinical cell therapy manufacture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app