Add like
Add dislike
Add to saved papers

Development and Validation of a Natural Language Processing Model to Identify Low-Risk Pulmonary Embolism in Real Time to Facilitate Safe Outpatient Management.

STUDY OBJECTIVE: This study aimed to (1) develop and validate a natural language processing model to identify the presence of pulmonary embolism (PE) based on real-time radiology reports and (2) identify low-risk PE patients based on previously validated risk stratification scores using variables extracted from the electronic health record at the time of diagnosis. The combination of these approaches yielded an natural language processing-based clinical decision support tool that can identify patients presenting to the emergency department (ED) with low-risk PE as candidates for outpatient management.

METHODS: Data were curated from all patients who received a PE-protocol computed tomography pulmonary angiogram (PE-CTPA) imaging study in the ED of a 3-hospital academic health system between June 1, 2018 and December 31, 2020 (n=12,183). The "preliminary" radiology reports from these imaging studies made available to ED clinicians at the time of diagnosis were adjudicated as positive or negative for PE by the clinical team. The reports were then divided into development, internal validation, and temporal validation cohorts in order to train, test, and validate an natural language processing model that could identify the presence of PE based on unstructured text. For risk stratification, patient- and encounter-level data elements were curated from the electronic health record and used to compute a real-time simplified pulmonary embolism severity (sPESI) score at the time of diagnosis. Chart abstraction was performed on all low-risk PE patients admitted for inpatient management.

RESULTS: When applied to the internal validation and temporal validation cohorts, the natural language processing model identified the presence of PE from radiology reports with an area under the receiver operating characteristic curve of 0.99, sensitivity of 0.86 to 0.87, and specificity of 0.99. Across cohorts, 10.5% of PE-CTPA studies were positive for PE, of which 22.2% were classified as low-risk by the sPESI score. Of all low-risk PE patients, 74.3% were admitted for inpatient management.

CONCLUSION: This study demonstrates that a natural language processing-based model utilizing real-time radiology reports can accurately identify patients with PE. Further, this model, used in combination with a validated risk stratification score (sPESI), provides a clinical decision support tool that accurately identifies patients in the ED with low-risk PE as candidates for outpatient management.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app