Journal Article
Review
Add like
Add dislike
Add to saved papers

Application of visual transformer in renal image analysis.

Deep Self-Attention Network (Transformer) is an encoder-decoder architectural model that excels in establishing long-distance dependencies and is first applied in natural language processing. Due to its complementary nature with the inductive bias of convolutional neural network (CNN), Transformer has been gradually applied to medical image processing, including kidney image processing. It has become a hot research topic in recent years. To further explore new ideas and directions in the field of renal image processing, this paper outlines the characteristics of the Transformer network model and summarizes the application of the Transformer-based model in renal image segmentation, classification, detection, electronic medical records, and decision-making systems, and compared with CNN-based renal image processing algorithm, analyzing the advantages and disadvantages of this technique in renal image processing. In addition, this paper gives an outlook on the development trend of Transformer in renal image processing, which provides a valuable reference for a lot of renal image analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app