Add like
Add dislike
Add to saved papers

Many morphs: Parsing gesture signals from the noise.

Parsing signals from noise is a general problem for signallers and recipients, and for researchers studying communicative systems. Substantial efforts have been invested in comparing how other species encode information and meaning, and how signalling is structured. However, research depends on identifying and discriminating signals that represent meaningful units of analysis. Early approaches to defining signal repertoires applied top-down approaches, classifying cases into predefined signal types. Recently, more labour-intensive methods have taken a bottom-up approach describing detailed features of each signal and clustering cases based on patterns of similarity in multi-dimensional feature-space that were previously undetectable. Nevertheless, it remains essential to assess whether the resulting repertoires are composed of relevant units from the perspective of the species using them, and redefining repertoires when additional data become available. In this paper we provide a framework that takes data from the largest set of wild chimpanzee (Pan troglodytes) gestures currently available, splitting gesture types at a fine scale based on modifying features of gesture expression using latent class analysis (a model-based cluster detection algorithm for categorical variables), and then determining whether this splitting process reduces uncertainty about the goal or community of the gesture. Our method allows different features of interest to be incorporated into the splitting process, providing substantial future flexibility across, for example, species, populations, and levels of signal granularity. Doing so, we provide a powerful tool allowing researchers interested in gestural communication to establish repertoires of relevant units for subsequent analyses within and between systems of communication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app