Add like
Add dislike
Add to saved papers

Cognitive function and skeletal size and mineral density at age 6-7 years: Findings from the Southampton women's survey.

Bone 2024 March 3
INTRODUCTION: Poor cognitive function and osteoporosis commonly co-exist in later life. In women, this is often attributed to post-menopausal estrogen loss. However, a common early life origin for these conditions and the associations between cognitive function and bone mineral density (BMD) in childhood have not previously been explored. We examined these relationships at age 6-7 years in the Southampton Women's Survey (SWS) mother-offspring cohort.

METHODS: Child occipitofrontal circumference (OFC), a proxy for brain volume, intelligence quotient (IQ) [Wechsler Abbreviated Scale of Intelligence] and visual recognition and working memory [CANTAB® Delayed Matching to Sample (DMS) and Spatial Span Length (SSP), respectively] were assessed. Whole-body-less-head (WBLH) and lumbar spine dual-energy X-ray absorptiometry [Hologic Discovery] (DXA) were performed to measure bone area (BA), bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Linear regression was used to examine associations between age and sex standardized variables (β represent standard deviation (SD) difference per SD of cognitive function).

RESULTS: DXA was performed in 1331 children (mean (SD) age 6.8 (0.33) years, 51.5 % male), with OFC, IQ, DMS and SSP assessed in 1250, 551, 490 and 460, respectively. OFC (β = 0.25 SD/SD, 95%CI 0.20,0.30), IQ (β = 0.11 SD/SD, 95%CI 0.02,0.19), and DMS (β = 0.11, SD/SD, 95%CI 0.01,0.20) were positively associated with WBLH BA, with similar associations for lumbar spine BA. OFC and DMS were also positively associated with WBLH BMC, but only OFC was associated with BMD (WBLH: β = 0.38 SD/SD, 95%CI 0.33,0.43; LS: β = 0.19 SD/SD, 95%CI 0.13,0.24).

CONCLUSION: Childhood brain volume was positively associated with measures of skeletal size and BMD, whereas IQ and memory were associated only with skeletal size. These findings suggest that common early life determinants for skeletal growth and BMD and cognitive function should be explored to identify potential early-life approaches to preventing osteoporosis and cognitive decline.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app