Add like
Add dislike
Add to saved papers

Urbanization-driven forest soil greenhouse gas emissions: Insights from the role of soil bacteria in carbon and nitrogen cycling using a metagenomic approach.

Increasing population densities and urban sprawl have induced greenhouse gas (GHG) emissions from the soil, and the soil microbiota of urban forests play a critical role in the production and consumption of GHGs, supporting green development. However, the function and potential mechanism of soil bacteria in GHG emissions from forests during urbanization processes need to be better understood. Here, we measured the soil fluxes of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) in Cinnamomum camphora forest soils along an urbanization gradient. 16S amplicon and metagenomic sequencing approaches were employed to examine the structure and potential functions of the soil bacterial community involved in carbon (C) and nitrogen (N) cycling. In this study, the CH4 and CO2 emissions from urban forest soils (sites U and G) were significantly greater than those from suburban soils (sites S and M). The N2 O emissions in the urban center (site U) were 24.0 % (G), 13.8 % (S), and 13.5 % (M) greater than those at the other three sites. These results were related to the increasing bacterial alpha diversity, interactions, and C and N cycling gene abundances (especially those involved in denitrification) in urban forest soils. Additionally, in our study areas, the soil pH and metal contents (K, Ca, Mg) affected key bacterial populations (such as Methylomirabilota, Acidobacteriota, and Proteobacteria) and indicators (napA, nosZ, nrfA, nifH) involved in reducing N2 O emissions. The soil heavy metal contents (Fe, Cr, Pb) were the main contributors to CH4 emissions, possibly by affecting methanogens (Desulfobacterota) and methanotrophic bacteria (Proteobacteria, Actinobacteriota, and Patescibacteria). Our study provides new insights into the benefits of conservation-minded urban planning and close-to-nature urban forest management and construction, which are conducive to mitigating GHG emissions and supporting urban sustainable development by mediating the core bacterial population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app