Add like
Add dislike
Add to saved papers

Performance Enhancement of Tin-Based Perovskite Photodetectors through Bifunctional Cesium Fluoride Engineering.

Tin halide perovskites are rising as promising candidates for next-generation optoelectronic materials due to their good optoelectronic properties and relatively low toxicity. However, the high defect density and the easy oxidation of Sn2+ have limited their optoelectronic performance. Herein, we report the treatment of the FASnI3 (formamidinium tin, FA) perovskite film by a bifunctional cesium fluoride (CsF) additive, which improves the film quality and significantly enhances the photoelectric performance. The responsivity of the perovskite-based photodetector (PD) with an optimal CsF concentration of 15% is over 60 times larger than that of the PD without CsF. It indicates that both the Cs substitution and the fluoride anion additive from CsF inhibit the oxidation of Sn2+ , optimize the crystal growth, and passivate the defects, demonstrating the dual roles of the CsF additive in improving the photoelectric performance. This work offers valuable insights into the additive selection for developing high-quality tin-based perovskite films and devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app