Add like
Add dislike
Add to saved papers

Sub-50-fs Kerr-lens mode-locked Yb-doped fluoride laser with 44% optical efficiency.

Applied Optics 2024 Februrary 2
Yb-doped fluoride has been demonstrated to be potential crystals for application in efficient ultrafast lasers. However, the trade-off between the shorter pulses with higher efficiencies is a challenge. In this work, using Y b , G d : C a S r F 2 crystal, we report on a sub-50-fs Kerr-lens mode-locked oscillator with an optical efficiency up to 44%. Pumped by a 976-nm diffraction-limited fiber laser and using chirped mirrors combined with prism pairs for the dispersion compensation, a pulse as short as 46 fs was obtained with 620-mW output power, corresponding to an optical efficiency more than 40%. Stable Kerr-lens mode-locking with RMS of output power lower than 0.3% and beam quality factors M 2 <1.14 were achieved. Moreover, a maximum output power of 780 mW was obtained in continuous-wave operation with 55.3% optical efficiency. To the best of our knowledge, the results in this work represent the shortest pulses generated from Yb-doped fluoride lasers as well as the highest optical efficiencies ever reported in sub-100 fs Yb bulk lasers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app