Add like
Add dislike
Add to saved papers

Examining the relationship between brain activation and proxies of disease severity using quantile regression in individuals at risk of Alzheimer's disease.

Previous studies have reported a pattern of hyperactivation in the pre-dementia phase of Alzheimer's disease (AD), followed by hypoactivation in later stages of the disease. This pattern was modeled as an inverse U-shape function between activation and markers of disease severity. In this study, we used quantile regression to model the association between task-related brain activation in AD signature regions and three markers of disease severity (hippocampal volume, cortical thickness, and associative memory). This approach offers distinct advantages over standard regression models as it analyzes the relationship between brain activation and disease severity across various levels of brain activation. Participants were 54 older adults with subjective cognitive decline+ (SCD+) or mild cognitive impairment (MCI) from the CIMA-Q cohort. The analysis revealed an inverse U-shape quadratic function depicting the relationship between disease severity markers and the activation of the left superior parietal region, while a linear relationship was observed for activation of the hippocampal and temporal regions. Quantile differences were observed for temporal and parietal activation, with more pronounced effects observed in the higher quantiles of activation. When comparing quantiles, we found that higher quantile of activation featured a greater number of individuals with SCD+ compared to mild cognitive impairment (MCI). Results are globally consistent with the presence of an inverse-U shape function of activation in relation to disease severity. They study also underscores the utility of employing quantile regression modeling as the modeling approach revealed the presence of non-homogeneous effects across various quantiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app