Add like
Add dislike
Add to saved papers

Association between fat and fat-free body mass indices on shock attenuation during running.

High amplitudes of shock during running have been thought to be associated with an increased injury risk. This study aimed to quantify the association between dual-energy X-ray absorptiometry (DEXA) quantified body composition, and shock attenuation across the time and frequency domains. Twenty-four active adults participated. A DEXA scan was performed to quantify the fat and fat-free mass of the whole-body, trunk, dominant leg, and viscera. Linear accelerations at the tibia, pelvis, and head were collected whilst participants ran on a treadmill at a fixed dimensionless speed 1.00 Fr. Shock attenuation indices in the time- and frequency-domain (lower frequencies: 3-8 Hz; higher frequencies: 9-20 Hz) were calculated. Pearson correlation analysis was performed for all combinations of DEXA and attenuation indices. Regularised regression was performed to predict shock attenuation indices using DEXA variables. A greater power attenuation between the head and pelvis within the higher frequency range was associated with a greater trunk fat-free mass (r = 0.411, p = 0.046), leg fat-free mass (r = 0.524, p = 0.009), and whole-body fat-free mass (r = 0.480, p = 0.018). For power attenuation of the high-frequency component between the pelvis and head, the strongest predictor was visceral fat mass (β = 48.79). Passive and active tissues could represent important anatomical factors aiding in shock attenuation during running. Depending on the type and location of these masses, an increase in mass may benefit injury risk reduction. Also, our findings could implicate the injury risk potential during weight loss programs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app