Add like
Add dislike
Add to saved papers

Investigation of surface hardness, thermostability, tribo-corrosion, and microstructural morphological properties of microwave-synthesized high entropy alloy FeCoNiMnCu coating claddings on steel.

Scientific Reports 2024 March 3
Deposition of high entropy alloy FeCoNiMnCu on SS-304 was carried out by microwave energy for application in "solid oxide fuel-cell (SOFC) interconnects". The ball-milling has been performed by taking "Fe, Co, Ni, Mn, and Cu" in equal 20 wt. % of before deposited on SS-304 substrate. The deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu high entropy alloy (HEA) was exposed to thermal-exposure in the air for up to 10 weeks at 800 °C. The uniform cladding distribution of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA particles can be apparently observed on SS-304 substrate by utilizing Scanning Electron Microscope (SEM), and Optical microscopy analysis. Homogeneity in the interfacial layer was evident by employing Scanning Electron Microscope (SEM) characterization. Results have indicated that after the thermal exposure of deposited steel with 20% Fe 20% Co 20% Ni 20% Mn 20% Cu in the air for up to ten weeks at 800 °C, a "protective Cr2 O3 layer", and "high-entropy spinel coating" of (Fe, Co, Ni, Mn, Cu)3 O4 have been formed. During microwave cladding, the emergence of harder-phases has contributed to the raised hardness. The wear behavior after coating of 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA on SS-304 substrate has significantly enhanced due to the strengthened wear resistance and hardness of the coatings. Findings have exhibited that the formation of (Fe, Co, Ni, Mn, Cu)3 O4 phase is a potential coating material for "SOFC interconnects" applications. Moreover, the cladding of SS304 with a composition of 20% Fe, 20% Co, 20% Ni, 20% Mn, and 20% Cu has demonstrated remarkable stability under thermal expansion studies. As the findings have revealed that the composite cladding has efficiently withstand significant variations in volume when subjected to elevated temperatures for a prolonged period of time, thus, exhibiting its superior thermal stability for SOFC-interconnect applications. Furthermore, the SEM images of the cladding surface, surface hardness, and tribocorrosion behavior of the coated material have been observed to identify the 20% Fe 20% Co 20% Ni 20% Mn 20% Cu HEA coating effect on SS-304 steel-substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app