Add like
Add dislike
Add to saved papers

A Short-Term Zinc-Deficient Diet Maintains Serum Calcium Concentrations through Ca Absorption-Related Gene Expression in Rats.

We investigated the effects of short-term dietary zinc deficiency on zinc and calcium metabolism. Four-week-old male Wistar rats were divided into two pair-fed groups for a 1-wk treatment: zinc-deficient group (ZD, 1 ppm); control group (PF, 30 ppm). The mRNA expression of zinc transporters, such as Slc39a (Zip) 4, Zip5, Zip10, and Slc30a (ZnT) 1, in various tissues (liver, kidney, and duodenum) quickly responded to dietary zinc deficiency. Although there was no significant difference in serum calcium concentrations between the PF and ZD groups, serum 1,25-dihydroxycholecalciferol (1,25(OH)2 D3 ) was higher in the ZD group than in the PF group. Moreover, short-term zinc deficiency significantly increased mRNA expression of transient receptor potential (TRP) cation channel subfamily vanilloid (V) member 6, S100 calcium binding protein G (S100g), and ATPase plasma membrane Ca2+ transporting 1 (Atp2b1) in the duodenum. Furthermore, short-term zinc deficiency increased vitamin D receptor (VDR) and cytochrome P450 family 24 subfamily A member 1 (Cyp24a1) mRNA expression in the kidney. These findings suggested that short-term zinc deficiency maintains serum calcium concentrations through Ca absorption-related gene expression in the duodenum, and that short-term zinc deficiency induced the expression of Cyp24a1 in kidney in response to an increase in the serum 1,25(OH)2 D3 level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app