Add like
Add dislike
Add to saved papers

Whole genome sequence-based characterization of Campylobacter isolated from broiler carcasses over a three-year period in a big poultry slaughterhouse reveals high genetic diversity and a recurring genomic lineage of Campylobacter jejuni.

Campylobacter is among the most frequent agents of bacterial gastroenteritis in Europe and is primarily linked to the consumption of contaminated food. The aim of this study was to assess genomic diversity and to identify antimicrobial resistance and virulence genes of 155 Campylobacter isolated from broiler carcasses (neck skin samples) in a large-scale Swiss poultry abattoir over a three-year period. Samples originated from broilers from three different types of farming systems (particularly animal-friendly stabling (PAFS), free-range farms, and organic farms). Campylobacter jejuni (n = 127) and Campylobacter coli (n = 28) were analysed using a whole genome sequencing (WGS) approach (MiniSeq; Illumina). Sequence types (STs) were determined in silico from the WGS data and isolates were assigned into complex types (CTs) using the cgMLST SeqSphere+ scheme. Antimicrobial resistance genes were identified using the Resistance Gene Identifier (RGI), and virulence genes were identified using the virulence factor database (VFDB). A high degree of genetic diversity was observed. Many sequence types (C. jejuni ST19, ST21, ST48, ST50, ST122, ST262 and C. coli ST827) occurred more than once and were distributed throughout the study period, irrespective of the year of isolation and of the broiler farming type. Antimicrobial resistance determinants included blaOXA and tet(O) genes, as well as the T86I substitution within GyrA. Virulence genes known to play a role in human Campylobacter infection were identified such as the wlaN, cstIII, neuA1, neuB1, and neuC1. Subtyping of the Campylobacter isolates identified the occurrence of a highly clonal population of C. jejuni ST21 that was isolated throughout the three-year study period from carcasses from farms with geographically different locations and different farming systems. The high rate of genetic diversity observed among broiler carcass isolates is consistent with previous studies. The identification of a persisting highly clonal C. jejuni ST21 subtype suggests that the slaughterhouse may represent an environment in which C. jejuni ST21 may survive, however, the ecological reservoir potentially maintaining this clone remains unknown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app