Add like
Add dislike
Add to saved papers

Discovery of metabolite biomarkers for odontogenic keratocysts.

INTRODUCTION: Odontogenic keratocysts (OKCs) are locally aggressive and have a high rate of recurrence, but the pathogenesis of OKCs is not fully understood. We aimed to investigate the serum metabolomic profile of OKCs and discover potential biomarkers.

METHODS: Metabolomic analysis was performed on 42 serum samples from 22 OKC patients and 20 healthy controls (HCs) using gas chromatography‒mass spectrometry to identify dysregulated metabolites in the OKC samples. LASSO regression and receiver operating characteristic (ROC) curve analyses were used to select and validate metabolic biomarkers and develop diagnostic models.

RESULTS: A total of 73 metabolites were identified in the serum samples, and 24 metabolites were dysregulated in the OKC samples, of which 4 were upregulated. Finally, a diagnostic panel of 10 metabolites was constructed that accurately diagnosed OKCs (sensitivity of 100%, specificity of 100%, area under the curve of 1.00).

CONCLUSION: This study is the first to investigate the metabolic characteristics and potential metabolic biomarkers in the serum of OKC patients using GC‒MS. Our study provides further evidence to explore the pathogenesis of OKC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app