Add like
Add dislike
Add to saved papers

High-Performance and Stable Perovskite X-ray Detection and Imaging Based on a Ti Cathode.

High-energy radiation detectors with a good imaging resolution, fast response, and high sensitivity are desired to operate at a high electric field. However, strong ion migration triggered by electrochemical reactions at the interface between a high-potential electrode and an organic-inorganic hybrid perovskite limits the stability of radiation detectors under a high electric field. Herein, we demonstrate that such ion migration could be effectively suppressed in devices with a Ti cathode, even at a high electric field of 50 V mm-1 , through time-of-flight secondary-ion mass spectrometry. X-ray photoelectron spectroscopy illustrates that Ti-N bonds formed at the interface of MAPbBr3 perovskite single crystals/Ti electrode effectively inhibit the electrochemical reaction in organic-inorganic hybrid perovskite devices and ultimately improve the operating stability under a high electric field. The device with a Ti electrode reaches a high sensitivity of 96 ± 1 mC Gyair -1 cm-2 and a low detection limit of 2.8 ± 0.3 nGy s-1 under hard X-ray energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app