Add like
Add dislike
Add to saved papers

Selective Partitioned Regression for Accurate Kidney Health Monitoring.

The number of people diagnosed with advanced stages of kidney disease have been rising every year. Early detection and constant monitoring are the only minimally invasive means to prevent severe kidney damage or kidney failure. We propose a cost-effective machine learning-based testing system that can facilitate inexpensive yet accurate kidney health checks. Our proposed framework, which was developed into an iPhone application, uses a camera-based bio-sensor and state-of-the-art classical machine learning and deep learning techniques for predicting the concentration of creatinine in the sample, based on colorimetric change in the test strip. The predicted creatinine concentration is then used to classify the severity of the kidney disease as healthy, intermediate, or critical. In this article, we focus on the effectiveness of machine learning models to translate the colorimetric reaction to kidney health prediction. In this setting, we thoroughly evaluated the effectiveness of our novel proposed models against state-of-the-art classical machine learning and deep learning approaches. Additionally, we executed a number of ablation studies to measure the performance of our model when trained using different meta-parameter choices. Our evaluation results indicate that our selective partitioned regression (SPR) model, using histogram of colors-based features and a histogram gradient boosted trees underlying estimator, exhibits much better overall prediction performance compared to state-of-the-art methods. Our initial study indicates that SPR can be an effective tool for detecting the severity of kidney disease using inexpensive lateral flow assay test strips and a smart phone-based application. Additional work is needed to verify the performance of the model in various settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app