Add like
Add dislike
Add to saved papers

Gender Difference in DNA Damage Induced by the Environmental Carcinogen Dibenzo[ def,p ]chrysene Individually and in Combination with Mouse Papillomavirus Infection in the Mouse Oral Cavity.

ACS Omega 2024 Februrary 21
Tobacco smoking and human papillomavirus infection are established etiological agents in the development of head and neck squamous cell carcinoma (HNSCC). The incidence and mortality of HNSCC are higher in men than women. To provide biochemical basis for sex differences, we tested the hypothesis that carcinogen treatment using dibenzo[ def,p ]chrysene, which is an environmental pollutant and tobacco smoke constituent, in the absence or presence of the mouse papillomavirus infection results in significantly higher levels of DNA damage in the oral cavity in male than in female mice. However, the results of the present investigation do not support our hypothesis since we found that females were more susceptible to carcinogen-induced covalent DNA damage than males independent of the viral infection. Since DNA damage represents only a single-step in the carcinogenesis process, additional factors may contribute to sex differences in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app