Add like
Add dislike
Add to saved papers

A tetraploid-dominated cytochimera developed from a natural bud mutant of the nonapomictic mandarin variety 'Orah'.

UNLABELLED: Nonapomictic citrus tetraploids are desirable in citrus breeding for the production of triploid, seedless varieties, and polyploid rootstocks. However, only a few lines have been reported, and they were all generated using chemical methods. A 2x + 4 × cytochimera of the nonapomictic citrus variety 'Orah' mandarin, which developed from a bud mutant, was found due to its morphology differing from that of diploid plants and characterised via ploidy analysis combining flow cytometry and chromosome observation. The chimaera was stable, and there were 1.86-1.90 times as tetraploid cells as diploid cells. Anatomical structure observation revealed that the 'Orah' chimaera may be a periclinal chimaera with diploid cells in the L1 layer and tetraploid cells in the L2 and L3 layers. The chimaera showed some typical traits of polyploid plants, including thicker shoots, wider and thicker leaves, larger flowers and fruits, and fewer but larger seeds in fruits than in diploid plants. Almost all the seeds of the chimaera were monoembryonic. Most of the self-pollinated progenies of the chimaera were identified as tetraploids, and some triploid, pentaploid, and hexaploid plants were found. As a female, the chimaera produced allotriploids when crossed with Australian finger lime. In addition, 6 plants developed from polyembryonic seeds of the chimaera were identified as sexual tetraploid progenies with low-level recombinant genomes. Therefore, the 'Orah' 2x + 4 × chimaera can be used as a female parent to produce hybrid triploid and tetraploid citrus plants with high efficiency. Identification of the chimaera demonstrated that tetraploid citrus plants, especially nonapomictic varieties, can be generated from shoot bud mutants.

SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11032-024-01456-x.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app