Add like
Add dislike
Add to saved papers

Automated neonatal nnU-Net brain MRI extractor trained on a large multi-institutional dataset.

Scientific Reports 2024 Februrary 27
Brain extraction, or skull-stripping, is an essential data preprocessing step for machine learning approaches to brain MRI analysis. Currently, there are limited extraction algorithms for the neonatal brain. We aim to adapt an established deep learning algorithm for the automatic segmentation of neonatal brains from MRI, trained on a large multi-institutional dataset for improved generalizability across image acquisition parameters. Our model, ANUBEX (automated neonatal nnU-Net brain MRI extractor), was designed using nnU-Net and was trained on a subset of participants (N = 433) enrolled in the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) study. We compared the performance of our model to five publicly available models (BET, BSE, CABINET, iBEATv2, ROBEX) across conventional and machine learning methods, tested on two public datasets (NIH and dHCP). We found that our model had a significantly higher Dice score on the aggregate of both data sets and comparable or significantly higher Dice scores on the NIH (low-resolution) and dHCP (high-resolution) datasets independently. ANUBEX performs similarly when trained on sequence-agnostic or motion-degraded MRI, but slightly worse on preterm brains. In conclusion, we created an automatic deep learning-based neonatal brain extraction algorithm that demonstrates accurate performance with both high- and low-resolution MRIs with fast computation time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app