Add like
Add dislike
Add to saved papers

The effect of bisphenol A on antioxidant defense and the structure and function of the liver of Siberian sturgeon (Acipenser baerii).

The present study was conducted to investigate the biochemical and histological changes of liver tissue in Siberian sturgeon (Acipenser baerii) exposed to different doses of bisphenol A (BPA). One hundred and eighty pieces of 1-year-old A. baerii with an average weight of 200-250 g bought and randomly distributed in 18 tanks (n = 10). After 2 weeks of adaptation, the fish received intraperitoneal injections of 1, 10, and 100 μg/g/week BPA and μg/g/week of 17β-estradiol intraperitoneally. The solvent control group received only peanut oil, while the control group did not receive any injections. In order to investigate histological changes of the liver, after 2 weeks the liver samples were taken, fixed in 10% formalin solution and slides prepared by routine histological methods. For assaying antioxidant defense status, the liver tissue from three fish of each replicates was captured and after homogenization, activity of catalase, superoxide dismutase, and glutathione peroxidase and malondialdehyde measured. The most important histological changes observed in the liver tissue were: vacuolation of hepatocytes, nuclear hypertrophy, necrosis of liver cells, expansion of sinusoids, and accumulation of fat cells. In the highest dose, the intensity of tissue changes increased. Activity of antioxidant enzymes and malondialdehyde content increased in fish exposed to 100 μg/g/week BPA in compare with other groups (p < .05). According to our findings, it could be concluded that liver histology was affected by BPA and tissue damage had occurred, which had led to changes in blood parameters. Also, the obtained results showed that the high concentrations of BPA used in this study stimulate the antioxidant defense. RESEARCH HIGHLIGHTS: BPA evoke oxidative stress in Siberian sturgeons in high dose of exposure. Severity of liver histologic lesions was dose dependent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app