Add like
Add dislike
Add to saved papers

A homozygous stop codon in HORMAD2 in a patient with recurrent digynic triploid miscarriage.

BACKGROUND: Recurrent miscarriage (RM) affects 1% to 5% of couples trying to conceive. Despite extensive clinical and laboratory testing, half of the RM cases remain unexplained. We report the genetic analysis of a couple with eight miscarriages and the search for their potential genetic etiology.

METHODS: Short tandem repeat (STR) markers, single nucleotide polymorphic (SNP) microarray, and human DNA methylation microarray were used to analyze the genotypes of two miscarriages. Exomes sequencing was performed on DNA from the two partners and identified variants were validated by Sanger sequencing.

RESULTS: STR marker genotyping demonstrated that the two available miscarriages are triploid digynic and resulted from the failure of Meiosis II. SNP microarray analysis revealed an additional Meiosis I abnormality that is the segregation of the two maternal homologous chromosomes in one triploid miscarriage. Whole-exome sequencing on DNA from the two partners identified candidate variants only in the female partner in two genes with roles in female reproduction, a missense in EIF4ENIF1 (OMIM 607445) and a stop gain in HORMAD2 (OMIM 618842). EIF4ENIF1 is a eukaryotic translation initiation factor 4E nuclear import factor required for the oocyte germinal vesicle breakdown, and HORMAD2 is part of the synaptonemal complex that was hypothesized to act as a checkpoint mechanism to eliminate oocytes with asynapsis during meiotic prophase I in mice.

CONCLUSION: While both genes may contribute to the phenotype, the Meiosis I abnormalities in the conceptions favor the causal role of HORMAD2 in the etiology of RM in this couple. This report illustrates the importance of comprehensively analyzing the products of conception to guide the search for the genetic causation of RM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app