Add like
Add dislike
Add to saved papers

Brody Disease, an Early-Onset Myopathy With Delayed Relaxation and Abnormal Gait: A Case Series of 9 Children.

Neurology 2024 March 13
Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1 . To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app