Add like
Add dislike
Add to saved papers

Enhancing speaker identification through reverberation modeling and cancelable techniques using ANNs.

This paper introduces a method aiming at enhancing the efficacy of speaker identification systems within challenging acoustic environments characterized by noise and reverberation. The methodology encompasses the utilization of diverse feature extraction techniques, including Mel-Frequency Cepstral Coefficients (MFCCs) and discrete transforms, such as Discrete Cosine Transform (DCT), Discrete Sine Transform (DST), and Discrete Wavelet Transform (DWT). Additionally, an Artificial Neural Network (ANN) serves as the classifier for this method. Reverberation is modeled using varying-length comb filters, and its impact on pitch frequency estimation is explored via the Auto Correlation Function (ACF). This paper also contributes to the field of cancelable speaker identification in both open and reverberation environments. The proposed method depends on comb filtering at the feature level, deliberately distorting MFCCs. This distortion, incorporated within a cancelable framework, serves to obscure speaker identities, rendering the system resilient to potential intruders. Three systems are presented in this work; a reverberation-affected speaker identification system, a system depending on cancelable features through comb filtering, and a novel cancelable speaker identification system within reverbration environments. The findings revealed that, in both scenarios with and without reverberation effects, the DWT-based features exhibited superior performance within the speaker identification system. Conversely, within the cancelable speaker identification system, the DCT-based features represent the top-performing choice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app